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An expression for the energy flux vector of plate bending vibrations isobtained 
in invariant form. The derivation of expressions for the transverse force, ben- 

ding and twisting moments in an arbitrary orthogonal coordinate system and the 

derivation of an orthogonality type condition for normal waves being propaga- 

ted in a thin elastic strip with free edges are considered as applications. 
In a number of cases it turns out to be useful to consider the energy flux vec- 

tor in analyzing the vibrations in systems with distributed parameters. The ex- 

pressions for the Umov-Poynting vector in electrodynamics and for the energy 

flux vector in acoustics are well-known. An analogous vector for the bending 
vibrations of a plate was mentioned only in [l - 31. This vector is used in [1] 

to prove a uniqueness theorem for a two-component acoustic model consisting 
of an ideal compressible fluid and elastic plates in contact with it. However, 
the expression for the energy flux in [1] (it was later cited in [2, 31 with a re- 

ference to Cl]) is erroneous. An exact expression (within the framework of the 
applicability of the Kirchhoff equation) is found below for the energy flux vec- 

tor of the bending vibrations of a plate and some applications of the formulas 
obtained are mentioned. 

Let us write the expression for the energy density w of the plate bending vibrations 
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Here 5 = 5 (2, y, t) is the plate bending displacement, D is the cylindrical stiffness, 

p is the plate surface density, and u is the Poisson’s ratio. We differentiate (1) with re- 

spect to time t and eliminate the second derivative with respect to t using the equation 
of plate bending vibrations 
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We consequently obtain after elementary manipulations 

Let us introduce the energy flux vector II by the relationship 

Equating (3) and (4) and using the 
tars, we obtain 

awli% + div II = 0 (4) 

two-dimensional Hamilton V and Laplace A opera- 
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a 
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a 
v=ia,+j,y, A=(V.V) 

Here, according to the traditional symbolism [5], it is assumed that the operator V acts 

on all the quantities in the products after it. The first operator A acts on both 5 and 

ag / at in the second and third members on the right. By using the usual methods [5]we 

can avoid this inconvenience. We hence arrive at the final expression 

-u !$A~-_(1-*)(y+. V)V6] (5) 

We introduce orthogonal curvilinear coordinates qlr q2 

2 = 2 (417 qz), Y = Y (qu qa) 

and we find the component r1, of the vector lI along the coordinate q1 and consider 

the last term in the right side of (5) in more detail since the passage over to curvilinear 

coordinates is obvious in the first two members 

Here H,, H, are Lame’ coefficients, e,, es are unit directions. The inconvenience of the 
last formula is that differentiation of unit directions is assumed, Using the rule for the 
differentiation of directions 
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(i, ic = 1, 2; i # k) 

we arrive at the following expression for the components of the flux vector II, 

1 aA. -- F=-D H, aq, 

(6) 

We draw an imaginary slit qa = Pa0 = const in the plate and we discard the part of 
the plate for which qa > qao. Then F has the meaning of a transverse force acting on the 
plate from the discarded part, M is the bending and N the twisting moment. The ex- 
pressions (7) are considerably more convenient than the traditional formulas [4] in which 
the Cartesian variables z and y take part, and the passage from which to arbitrary co- 
ordinates is related to a direct conversion of the derivatives. In particular, we immedi- 

ately obtain known expressions for the polar coordinates x = r cos cp, y = r sin cp, q1 = 
r,qa=~,H,=l,Hs=r. 

As another application of the result obtained, we consider the derivation of an expres- 
sion for the vibrational energy flux in an elastic tape. In the interest of brevity, we call 
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this an infinitely long,elastic plate of constant width. The vibrations of such a plate 
have been studied in [6]. We direct the @-axis along the plate; let z = ztta be the 
equation of the plate edges. 

Equation (2) holds for a plate for 1 1: 1~ a, y E (-00, +w) , The plate edges are as- 
sumed free, which yields the following boundary conditions : 

(8) 

Let us imagine a rectangle ABCD (Fig. l), whose two sides coincide with the plate 
edges, cut out of the plate, and let us calculate the energy flux Il through its outline. 
We use the Green’s formula 
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By virtue of (5) the component II, can be written as follows: 

Fig. 1 

l-Ix=-D[a(z+$$)- (9) 
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The expression for I$, is obtained from this latter by a circu- 
lar permutation z -+ y d 2. In evaluating the integrals of II,, 

we integrate by parts in the second member, and we then use 
the boundary conditions (8). The integrands hence vanish, con- 

sequently n 

s 
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Kxdy =D(i- “)atm A I 
A 

We also integrate by parts in the second term when evaluating 

the integrals of II, , and obtain 

!s 
divfIdsdy= 

A3CD 

In the absence of external field sources div II = 0, therefore, in this case the expresr 
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is independent of the selection of Y. This expression has the meanimg of bending vib- 
rations energy transferred per unit time through an arbitrary normal section of elastic 

tape in the direction of increasing coordinate Y. Attention should be directed to the 
presence of the term outside the integral in (10). 

We now turn to an .examination of stationary processes. Let us assume that the time 
dependence is given by the factor exp (--tot) and let us agree to always omit it. As 

usual, we shall take the real part of the complex quantity 5 (2, y) exp (--itit) as the dis- 

placement in the plate. In the general case we have for the energy flux vector(5) after 

taking the average with respect to time 

where the asterisk denotes the complex conjugate. 
Correspondingly, we obtain for the energy flux in an elastic tape (10) 
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aya~= dx II --a 
Let us introduce two normal waves [6] 

51 = ~1 Me ‘lrlk, I;z = u2 (x)e*&’ 

(Im ~1,~ = 0, Im. k, pa = 0) 

Which are propagated in the elastic tape with the wave numbers p1 and ps (& # ps). 
We evidently have for the energy flux <II> of their superpositions 5 = 5% + 5% 

cl-I> = <II,> + <II,, + <II,,> (11) 

Here <II,}, (II,> are the energy fluxes transferred separately by the waves & and 5s. 
After certain calculations we obtain for the energy flux cII~~) of their interaction 

(I&z> = ~~t%+1"2)wP1 -!Jctz)Yl 
{ 
fJ(U,Ui + v%7l"-, + (12) 
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The quantities (II), (II,}, (IIs) are independent of y, whereupon (II,,) should also be in- 
dependent of y by virtue of (11). Hence, the expression in the braces in (12) shouldequal 

zero. We consequently arrive at the following condition of orthogonality type [7] fornor- 
ma1 waves in an elasdc tape 

(3 (u+2 + U.&u;) I”, + i I(@ + p22) wJ2 -J- ~~l%z? dx = 0 

--(1 
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The existence of a global Liapunov functional for nonlinear evolutionary equa- 

tions in a Hilbert space is investigated as a continuation of paper [l]. The results 

obtained represent a generalization of the results of the theory of absolute stabi- 

lity [2, 31, for the systems with infinite dimensional phase space, and are used for 
investigation of the nonlocal stability and instability of nonlinear distributedsys- 

terns. The conditions of existence of the global Liapunov functional obtained are 

illustrated by an example of a nonlinear parabolic system defined in the interval 

[0, 11. The concept of a Liapunov functional was first introduced and used with 
success in [4]. 

1. Evolutionary equation8 fn a Hllbert ~pac8, Clo#r iv of non- 
linear operatora. Let H. V and U be the Hilbert spaces [5] over a field of real 

numbers with scalar products c,)~, <,)v and (,)rr, and zero elements fi,, 9, and 0, , 
respectively. We denote by H* and V* the Hilbert spaces conjugate to H and V [5], 
assume that V C H = HZ C V+, that the space V is dense in H and, that the imbed- 

ding v + H is continuous. Let A be a continuous nonlinear operator V -+ V* closedin 
the space H. Further,let B be a linear bounded operator U --f V* and @ (e) a nonlin- 

ear (generally speaking) operator H X R1 --f U, where RI denotes the real axis. 

We consider the following nonlinear evolutionary equation [6]: 

~“(t)=Az(t)-fB~(2(t),t) 

By the generalized solution of (1.1) in the interval (z, 2’) we understand the 
2 (t) E W (r, T; v) satisfying the equation 
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